MANCHESTER 1824 The University of Manchester

Graphite – Molten Salt Interactions Workshop 20th/ 21st July 2022

Nuclear Graphite Research to Support MSR development

Content contained within this presentation must not be copied or distributed without consent from the University of Manchester.

Prof. Abbie Jones

Nuclear Graphite Research Group The University of Manchester, UK

Nuclear Graphite Research Group

The University of Manchester

MANCHESTER

- Founded in September 2001, we are an internationally recognised nuclear research group based at the University of Manchester
- Within the UoM, NGRG are members of:
 - Dalton Nuclear Institute
 - Henry Royce Institute for Advanced Materials
- Major Partnerships NGRG > £24M in funding and collaborations including:
 - Research Councils & Innovate UK
 - National and International Facility Access
 - UK Nuclear Industry
 - European and International Commission
 - Worldwide collaborations
- Publications and IMPACT
 - over 150 open literature publications
 - Two UK REF impact cases 2014 and 2021
 - Over 280 substantial industrial reports

Mechanisms of Retention and Transport of Fission Products in Virgin and Irradiated Nuclear Graphite

Irradiated Materials Facility

- Reactor graphite samples
- Sample machining, preparation, radiometric and radiological fingerprint characterisation (α , $\beta \& \gamma$)
- Microstructural characterisation (2 & 3D) including spectroscopic & crystallographic
- In situ testing mechanical and environmental
- Chemical and physical treatments with on line spectroscopic evaluation

Molten Salts in Nuclear Technology Laboratory National Nuclear User Facility

- £2.3 M new research facility several hubs
- The MSNTL aims to provide a molten salt R&D capability for studying *fluoride salts in nuclear systems* within the UK for the first time.
- Enabling the UK's expertise in chloride salts from pyroprocessing research to alternative salt systems in order to explore expanding research areas such as
 Molten Salt Reactor technologies
- Providing an *interdisciplinary hub* for molten salts research with radioactive materials.
- Utilising bespoke experimental rig designs
 - Molten salts irradiation test rigs

MANCHESTE]

The University of Manchester

High temperature column for dynamic ion exchange studies with molten salts

The high-temperature molten salt graphite treatment

Dalton Cumbrian Facility (image courtesy of Dalton Nuclear Institute)

R&D PROJECT AREAS – AGR SAFETY

AGR lifetime evolution

The University of Manchester

- Brick –Brick interactions
- AGR single Brick
 - Irradiated Induced Dimensional Change / Thermal Stresses → Cracks / Shrinkage
 - Δ F/ T and Oxidation

Radiolytic Oxidation

- Pore structure evolution with irradiation
- Permeable flow and chemistry

Finite element modelling & analysis to provide independent support the ONR

Heysham 2 & Torness sealing ring analysis to support the ONR

Detailed finite element model assembly

MANCHESTER

The University of Manchester

Stresses due to crack opening

R&D PROJECT AREAS – NEW TECHNOLOGY: HTR AND MSR

- Understanding new graphite
 - microstructures and porosity distributions
- Materials properties behaviour → evolution with irradiation and high temperatures
- Fission product behaviour → intrusion, retention, migration and location
- Electrochemistry interactions
- Waste behaviour and treatment options reduce impurity content, management of ³H and others

Fig. 1 Schematic of the effects of temperature on the irradiation damage behaviour of graphite.

MSR / HTR

Mechanisms of Retention and Transport of Fission Products in Virgin and Irradiated Nuclear Graphite

UoM, Loughborough, UCF, ORNL, NCSU

- NBG-18, PCEA and POCO (ZXF-5Q and AXF-5Q), IG-110 and HOPG;
- Infusion/ infiltration
- Implantation using ion beam irradiation (Cs and Ag);
- Crystallite recovery via annealing;
- Techniques: TEM, HAXPS, Raman spectroscopy.

https://doi.org/10.1016/j.jnucmat.2021.153262 https://doi.org/10.1016/j.apsusc.2019.144764

U.S. DEPARTMENT OF

ENERGY

R&D PROJECT AREAS – WASTE TREATMENT

The University of Manchester

MANCHESTER

Research challenges

- Complexities due to graphite grades, varied operational environment, oxidation and irradiation damage
- Challenges around removal, treatment and long term behaviour in a GDF

Research needs

- Scale up: **TRL** with industrial partnerships
- Provide joined up solutions for graphite waste from retrieval to GDF
- Decontamination of ¹⁴C & further long lived nuclides
- Volume / isotope reduction (ILW \rightarrow LLW)
- Potential reuse and recycle graphite material for Gen IV

Graphite Waste R&D: decontamination project

The University of Manchester

MANCHESTER

1. Investigate the application of electrolysis to irradiated graphite

2. Assess the release of corrosion and fission products in molten salt media

> Examine graphite behaviour and structural changes under molten salt conditions

> > 4. Understand the behaviour and associated release into the gas phase

- [1] Grebennikova T, Jones AN, Sharrad CA <u>Energy Environ Sci 2021. doi:10.1039/d1ee00332a</u>.
- [2] Worth RN, Theodosiou, Wickhamd AJ, Jones AN, J Nucl Mater 2021; doi:10.1016/j.jnucmat.2021.153167.
- [3] Theodosiou A, Jones AN, J Nucl Mater 2018. doi:10.1016/j.jnucmat.2018.05.002.
- [4] Theodosiou A, Jones PLoS One 2017;12:1–19. doi:10.1371/journal.pone.0182860.

Working electrode with graphite basket and the ce used

The high-temperature molten salt apparatus

Graphite Waste R&D: decontamination project

/尼(

The

2

The University of Manchester

MANCHESTER

1824

Retention and Transport of Fission Products in Nuclear Graphite for Next Generation Nuclear Reactors – James Daw, Alex Theodosiou and Abbie Jones

- The Electrochemical Treatment of Nuclear Graphite in Molten Salt media -Faisal Altamimi, Abbie Jones and Clint Sharrad
- Decontamination of carbonaceous nuclear waste streams for segregation and re-use: Graphite recycling - Fran Brooks-Ward, Abbie Jones and Clint Sharrad
- Tritium removal from molten salt media in nuclear fission / fission processes – Molli Forber Abbie Jones and Clint Sharrad

Nuclear Graphite Research to Support MSR development

Graphite – Molten Salt Interactions Workshop 20th/ 21st July 2022

Content contained within this presentation must not be copied or distributed without consent from the University of Manchester.

Prof. Abbie Jones

Nuclear Graphite Research Group The University of Manchester, UK