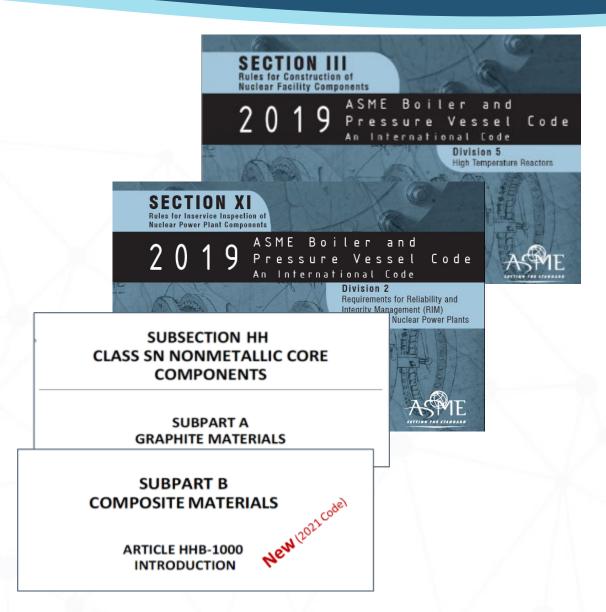
Current state of ASME code rules

Will Windes Idaho National Laboratory ASME Nonmetallic Working Group, Chair

DOE-NRC Molten salt - Graphite material issues Virtual Workshop

20-21 July 2022

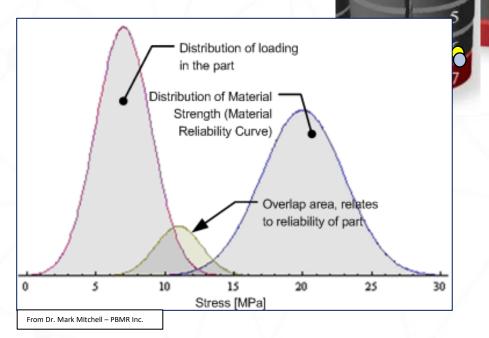


ASME Code Rules: Topics

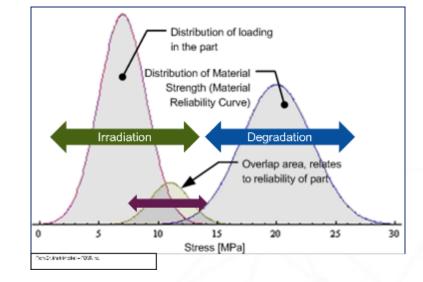
- General review of code rules
 - What do they cover, what they don't.
 - Probability of failure
 - Material property parameters
 - Stresses and loads
 - Degradation on probability of failure (POF)
- Specific Molten Salt issues of interest to the code
 - Material property changes
 - Affect on failure in components
 - Enhanced stresses due to intrusion
 - Pre- and post-turnaround (crack formation) effects
 - Degradation of material
 - Abrasion/Erosion
 - Fluorination
 - Combination effects
 - MS + oxidation, MS + irradiation, etc.
- Other issues?

2

Licensing challenge: No graphite fabrication standards


												 No "St
ional stands ment of last	ord was developed is relational Standard	n accordance will Guides and Rec	h internationally receptor	niard mineiples y the World Tra	on standardizati de Organization	in etablided in Technical Barrier	the Decision on the Trade (TB)	Principles for the T) Committee.				Not
Des	Ignation: A	240/A240M	l - 20a									AS ²
												(no
Ch		nd Chro	omium-Nicl Pressure							_		- Thi
1 1						đ	Dr A	240/A24	0M - 20	a		• All gra
1					TA	BLE 1 C	hemical	Compositio	on Require	ments, %		limited
s apc	UNS Desig. ⁸	Туре	C ^D	Mn	Ρ	S	Si	Cr	Ni	Mo		Eac
for	N08020	1007	0.07	2.00	0.045	ustenitic (C 0.035	hromium- 1.00	Nickel) (Chror 19.0-21.0	nium-Mangar 32.0–38.0			forr
arch.	N08367		0.030	2.00	0.040	0.030	1.00	20.0-22.0	23.5-25.5	6.0-7.0		1011
egare	N08700		0.04	2.00	0.040	0.030	1.00	19.0-23.0	24.0-26.0	4.3-5.0		 Uni
all b m th	N08800	800 ⁰	0.10	1.50	0.045	0.015	1.00	19.0-23.0	30.0-35.0	5222	1	rea
anda spo fores	N08810							AST A	240/A24	40M – 2	20a	
	N08811	TABLE 2 Mechanical Test Requirements								ements	• But th	
	N08904				- 20	Tensil	e Streng	th, min	Yield Stren	gth, ⁸ min	Elongation	simila
	N08925 N08926 S20100 S20103	UNS	Designation	Ту	pe ⁴	ksi		MPa	ksi	МРа	2 in. or 50 mm, min, %	Spe
	S20103 S20153	hisson					Austenit	ic (Chromium-				gra
	S20161	N08020 N08367			* *	80		550	35	240	30 [#]	U
	1 2	Shee	et and Strip			100		690 655	45 45	310 310	30 30	Mu
		N08700			00 ^F	80		550	35 30 ⁰	240	30	- Mu
						75		520		2054	30 ^H	

- No "Standard" nuclear graphite
 - Nothing like metals have
 - ASTM D7219 provides minimum property values (not fabrication standard)
 - This is a geologic material
- All graphite grades **are proprietary**. Only limited/general fabrication data is known.
 - Each grade has closely guarded, proprietary formulae owned by graphite suppliers
 - Unique individual change to material properties in reactor conditions
- But the good news is that all grades react similarly under nuclear core conditions
 - Specific changes are dependent upon individual grade
 - Much more uniform response pre-turnaround dose
 - Much <u>less</u> uniform response post-turnaround dose


Generally, the rules are pretty good and cover most of the critical areas of interest to establish a safety envelope.

- Robust un-degraded (unirradiated) construction rules
- Their weakness is in the details: How to establish and apply degradation, how to define component failure, how to calculate the probability of failure, etc.
- What they **do** cover:
 - Establishes a workable probabilistic methodology
 - Establishes specific rules for probability of failure (POF)
 - Three Assessments (Simple, Full, Test)
 - Establishes material properties of interest
 - Material Data Sheets (MDS)
 - Establishes minimal test matrix for graphite qualification
 - 144 specimens with grain/144 against grain
 - Establishes <u>some</u> degradation issues
 - Oxidation, irradiation, combined Irr & Oxid

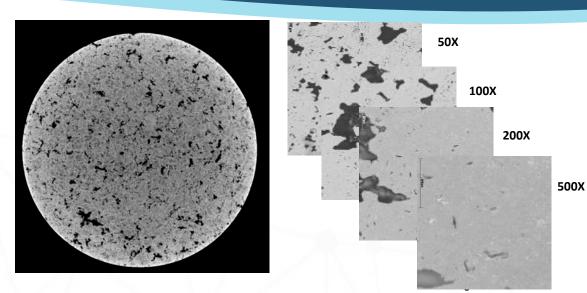
What ASME Code Rules DO NOT cover?

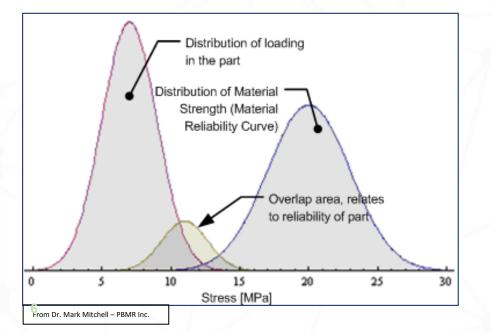
Salt residue

After immersion in FLiNaK

- In General, rules don't have enough <u>detail</u> on how to handle degradation
 - Section III, Div-5 are Construction code rules
 - But where should the degradation rules be written?
- Specifically, there are a few conspicuous areas where we are currently struggling
 - Failure and calculating failure of components
 - Propagation of a single crack is not failure
 - The FEA mesh size and volume grouping methodology
 - How to handle irradiation induced changes
 - Before and after turnaround dose changes are critical
 - Code case for each graphite grade? Or uniform behavior?
 - Temperature effects on irradiation changes
 - Combined degradation effects
 - Irradiation induced changes of oxidized material
 - Irradiation induced changes in molten salt environment
 - Lack of testing standards

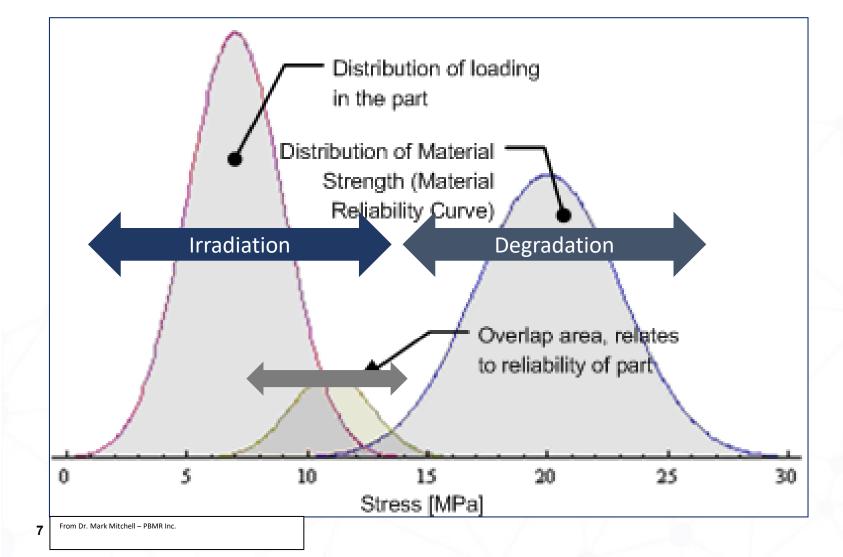
ASME requires degraded properties but no way to get them


Molten salt specific degradation issues


Probabilistic design

We know nuclear graphite has significant flaws

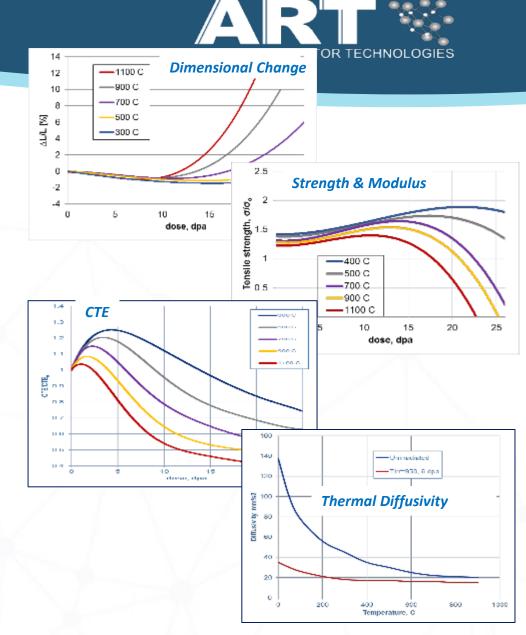
- Some amount of failure (i.e., a crack) is certain
- Therefore, core components need to be designed to accept some amount of failure.
 - Probability of failure approach is taken
 - Based upon overlap of applied stresses and inherent strength of the nuclear grade used



Probablistic verses deterministic design approach

- Deterministic is generally too limiting for a brittle material
- A distribution of possible strengths in a material is needed for quasi-brittle materials (i.e., flaw size for graphite).
- Probability of failure in component based upon inherent strength of graphite grade and induced stresses during operation.

Applying degradation to POF



- Degradation changes the material properties
 - Irradiation strength increases
 - High temperature increases strength
 - Oxidation strength decreases
 - Molten salt strength (maybe) decreases
- Irradiation changes stress loading of the part
 - Dimensional change increases stress
 - Irradiation creep relieves stress
- Overlap will change.
 - POF will change

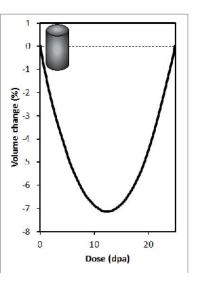
Irradiation Effects on Graphite Properties

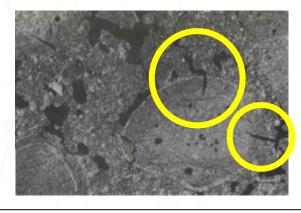
General graphite irradiation behavior

- Significant changes occur during normal operation:
 - Dimensional change
 - Turnaround dose is key parameter
 - Highly temperature dependent
 - Density
 - Graphite gets denser with irradiation until Turnaround dose
 - After Turnaround density decreases (volumetric expansion)
 - Formation of microcracks (molten salt consideration)
 - Strength and modulus
 - Graphite gets stronger with irradiation ...
 - Until Turnaround dose is achieved. It then decreases
 - Coefficient of thermal expansion
 - Initial increase but then reduces before Turnaround
 - CTE is why properties are so temperature dependent
 - Thermal conductivity
 - Decreases almost immediately to ~30% of unirradiated values
 - Oxidation rate
 - Increases approximately 2-3 times over unirradiated rates
- Significant changes do not typically occur in the following properties:
 - Neutron moderation, specific heat capacity, or emissivity

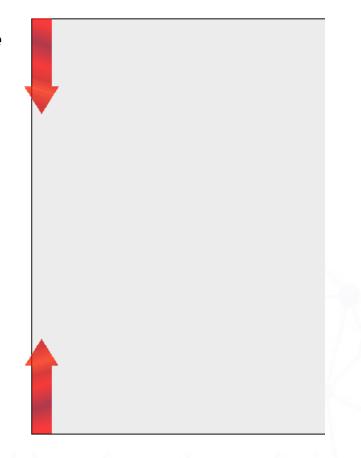
Graphite Degradation (ASME Material Data Sheets)

Grade Designation								
Material Grade		Material spec	. ID	₽ A	STM spec.		9-	
Max. grain size (mm)		F		esignation		⊸		
	(Те	mperature-I	Dependent Pa	rameters			
Property	Units	Orientation	20°C	200°C	400°C	600°C	800°C	1000°C [Note (1)]
Bulk density 🕞	kg∙m ⁻³							
Strength – tensile 🗲	MPa	WG, AG						
Strength – flexural ाि (4-point)	ИРа	WG, AG						
Strength – compressive F	l IPa	WG, AG						
Elastic modulus 🕞 (dynamic)	CPa	WG, AG						
Elastic modulus (static) F	GPa	WG, AG						
Coefficient of thermal 🗜 expansion	°C-1	WG, AG						
Thermal conductivity 🗗	W/m•k	WG, AG						
		\subset		Oxidation – E	iffect	>		10%
Property	Un	its	2%	4%			8%	10%
Strength [.] 🖪								
Elastic modulus (dynamic) [.]	9							
Thermal conductivity [.] 🐱		_				-		
Property		Hani		ated Graphit	e WG		AG	
Dimensional change [.]							A9	
								-
Creep coefficient [.] 🖻								-


ASME Data sheets capture most of the graphite material properties of interest:

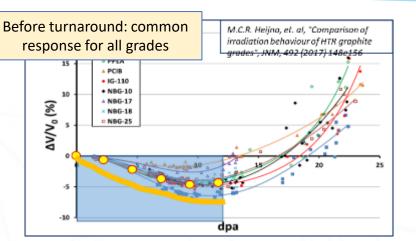

- Properties
 - Density
 - Strength
 - Elastic modulus
 - CTE & Conductivity
 - Anisotropy
- Temperature dependence
 - Temperature affects everything
- Irradiation effects
- Oxidation effects
- Not covered (yet)
 - Molten salt issues
 - Abrasion/erosion
 - Combination of degradation processes
 - Details on how to use irradiation data

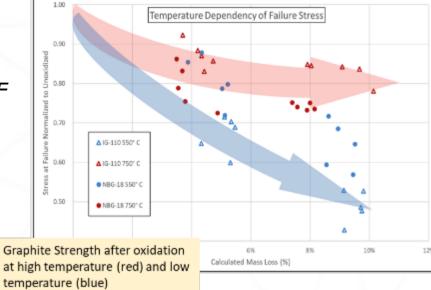
Induced stresses


- Fundamental material properties change with irradiation/oxidation/MS must be addressed
 - Applicant must assess stresses within component due to irradiation and thermal effects
 - Internal stresses from dimensional change (Need creep response, too)
 - Turnaround dose is critical to assumptions of material response (tensile/compressive
 - New cracks formed after turnaround

G. Haag," Properties of ATR-2E Graphite and Property Changes due to Fast Neutron Irradiation", Juel-4183, 2005

- Applicant must also assess property changes to design due to irradiation, oxidation, and molten salt degradation
 - Changes in density, strength, elastic modulus, CTE, erosion/wear, and thermal conductivity.



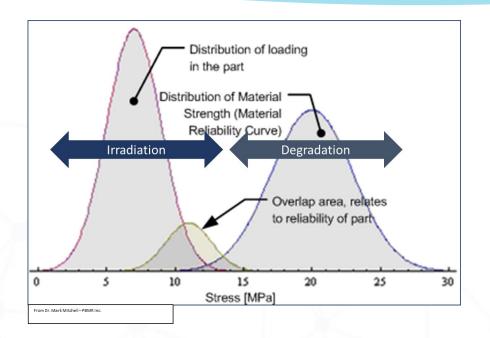

Current Nonmetallics Work Group (NWG) tasks?

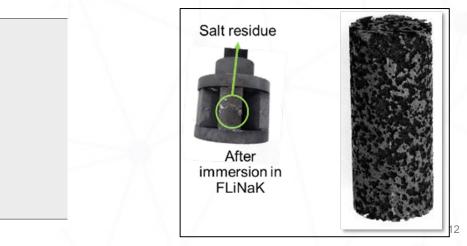
Task Groups formed within NWG:

- Failure in graphite components
 - Redefining failure other than a crack propagating
 Review of POF assessments
 - Underlying assumptions and why they are conservative
- Degradation rules
 - Oxidation degradation
 - Low temperature maximum penetration
 - Component failure through oxidation Irradiation degradation
 - Before After turnaround induced changes
 - Affects on material properties, stresses, and POF
 - Molten salt degradation issues
 - Salt intrusion
 - Abrasion/Erosion issues

Cracked AGR core brick at Hunterston B power station

Summary of ASME issues

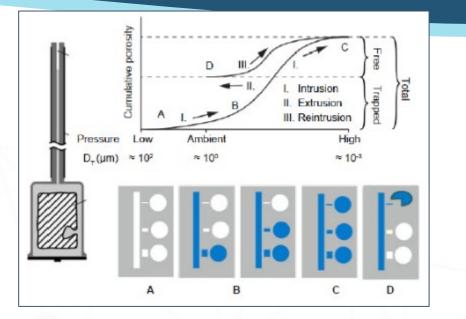



Induced stresses (crack propagation)

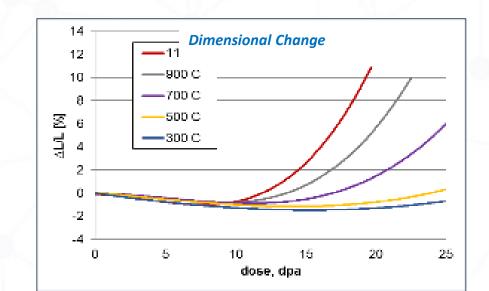
- Internal stress development
 - Irradiation induced dimensional change
 - Thermal induced changes
 - MS intrusion into microstructure
- External loads
 - Design features which produce localized loads
 - High gas pressure
 - Molten salt pressure

Changes to/in the graphite

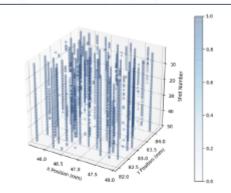
- Material properties critical for structural integrity
 - Strength reduction
 - Thermal changes which can induce stresses
- Degradation
 - Material removal
 - Wear, abrasion, erosion, oxidation, MS reaction
 - Mechanisms which weaken the graphite
 - Internal oxidation (kinetic controlled regime)

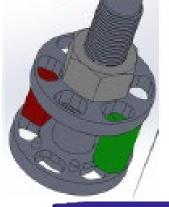


Specific molten salt issues of concern

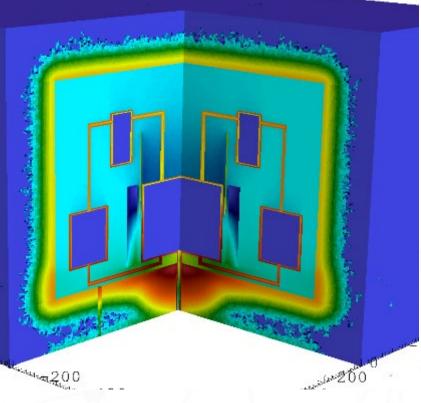

Some issues NWG is concerned about

- Salt impregnation into graphite pores
 - Internal stresses in combination with irradiation
 - Physical damage, crack formation
 - "Hot spots" from fueled molten salt
- MS wear/abrasion/erosion
 - Formation of large defects/"cracks"
 - Reduction of load bearing capability (MS pressure)
- Chemical reaction (fluorine)
 - Material removal similar to wear/erosion issues
- Other non-graphite issues
 - Chemical coupling with metallic systems
 - Neutronics issues (moderation, hot spots, etc.)
 - Issues that could increase coolant blockage probability in core


Salt residue

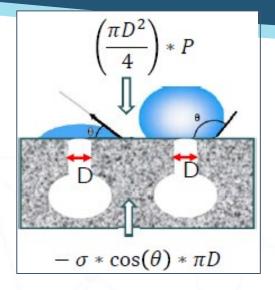


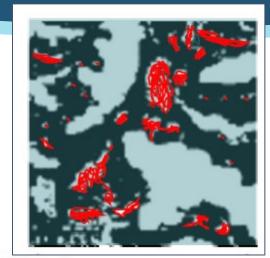
Molten Salt: What are **NOT** the issues


- Graphite Molten Salt chemistry is considered inert
 - No chemical attack of graphite
 - No noticeable graphite attack during MSRE
- Little thermal variability within MS designs
 - Thermal transport so efficient that temperatures throughout core are evened out.
 - Small thermal induced stresses
- No combination effects
 - Currently rules don't address MS + oxidation + irradiation
- Pool type or low pressure designs
 - Minimal pressure on components
 - Density increase at lower elevations?
 - Coolant is relatively slow moving
 - By-pass issues are minimized

3D reconstruction of hyperspectral data showing FUNAK distribution in graphite sample exposed to molten FUNAK.

Specific issues: Salt impregnation in pores




- Molten salt diffusing into graphite pore structure
 - Nuclear graphite = 15 20% open porosity
 - Size of pores dependent upon grain size
 - Pores ~ 1/3 of grain size average

Grain Type	Size	
Medium	< 2000 µm (Nuclear)	
Fine	< 100 μm	
Superfine	< 50 μm	
Ultrafine	< 10 µm	
Microfine	< 2 μm	
Nanofine	< 0.1 µm	

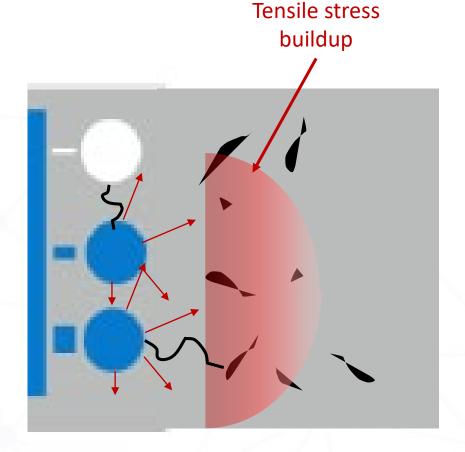
Preliminary assessment indicated MS can penetrate any but nanofine grades

- Nanofine grades are not really a thing
- Nano-sized particles are difficult

Open pores Closed pores

	Graphite Grade	Grain Size, μm	Density
	NBG-18	Medium < 1800	1.87
	CGB (MSRE)	Medium	1.86
	IG-110	Fine < 100	1.76
	POCO-ZXF-5Q	Microfine < 2	1.78
	POCO-AXF-50	Ultrafine < 10	1.78
	POCO-TM	Ultrafine < 10	1.82
	G347A	Ultrafine < 10	1.85
6	ETU-10	Superfine < 50	1.74

Specific issues: Salt impregnation in pores


Internal stress and crack build-up

- The concern is change from liquid to solid
 - Volume change from cooling dependent upon salt composition
 - Solid fill may prevent pore closure during irradiation induced dimensional densification

Stress buildup

- Interior tensile stresses build up
- Cracks form/propagate between surface pores
 - Spallation
- Cracks form/propagate into interior of graphite
 - Interior cracking, build-up of internal strain/stress
- Crack initiation sites already exist from existing pore structures
 - Propagation of cracks
 - Magnification of irradiation induced internal stresses
 - Induced internal stresses during cool down

Would like to know if this is a problem

Specific issues: Wear & Abrasion

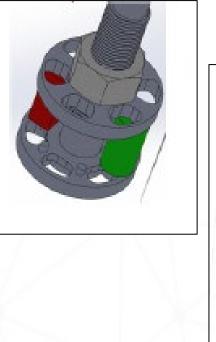
HHA-3143 Abrasion and Erosion

code rules specifically not endorsed by . Abrasion shall be evaluated if there is relative motion between Graphite Core Components, Graphite Core Components and interfacing components, or Graphite Core Components and the fuel of a pebble bed reactor.

> Erosion shall be evaluated in areas where (b) the mean gas flow velocity in the cross section of the channel exceeds 330 ft/sec (100 m/s).

Some Graphite Grades	Density
NBG-18	1.87
CGB (MSRE)	1.86
IG-110	1.76
POCO-ZXF-5Q	1.78
POCO-AXF-50	1.78
G347A	1.85
ETU-10	1.74

- ASME code written for gas-cooled conditions
 - Molten salt not considered in original code rules
 - But GCR rules are not well written, as seen
 - Molten salts are generally higher density than graphite
 - Abrasion from salt is definitely possible
 - Abrasion exacerbated with dust/inclusions
 - Erosion flow limits are problematic even for gas
 - There is no supporting data for 100 m/s
 - Not applicable to liquid MS
 - Abrasion and erosion are design dependent
- MS Task Group working this issue


Some Molten Salts	ρ (900°K)
FLiBe	> 1.9
NaFNaB	> 1.8
FLiNaK	> 2.0
FLiNaBe	> 1.9
KCl – MgCl ₂	> 1.7
FluZirK	> 2.6

Specific issues: Chemical reaction

As noted, graphite/molten salt are all assumed inert

- If fluoride reactions are possible:
 - Is internal degradation possible (similar to oxidation)?
 - If just the outside surface the code can handle it as material removal
- Need a reaction rate
 - Temperature effects
- Irradiation effects on reactivity?
 - Irradiation demonstrated to increase oxidation reactivity
 - RSA sites increased
- ASME code will tackle this similar to oxidation reaction

What ASME is concerned about

Engineering issues: Must affect the core safety or performance

- Salt impregnation into graphite pores
 - Must induce <u>significant</u> stresses
 - Must induce <u>significant</u> damage/cracks
 - "Hot spots" must create stresses

Wear/abrasion/erosion

- Most likely as engineering issue
- Need wear rates, likelihood of cracks, and effects from temperature

Chemical reaction

- Must have significant damage accumulation
- "Galvanic Coupling" with metallic systems
 - Is there damage to graphite?
 - Is there significant damage to other systems?

- Salt impregnation into graphite pores
 - Don't care about 1-2 µm penetration
 - Don't care if minimal stresses created
 - "Hot spots" must be significant
- Wear/abrasion/erosion
 - Low wear rates or small (um) crack formation is not important
- Chemical reaction
 - ASME believes that graphite MS is inert
 - Treat similar to oxidation rates
- Coupling with metallic systems
 - Needs to be significant degradation rate

We don't care about academic or material science issues

Lack of testing standards for degraded material

A dearth of Molten Salt testing standards

- Code rules will specify needed data but **not** specify how to get it
- Non-MS ASTM tests have been underdevelopment since late 1990s
 - Standardized MS tests have not even been attempted yet
 - Why should NRC believe data if tests have not been vetted?
- MS testing is extremely difficult
 - How to standardize tests that very few facilities can perform?
 - How to perform in-situ testing (mechanical, thermal, etc.)?
 - How to perform elevated temperature testing?
 - How to test irradiated material in molten salt environment?
- Designer must prove their data is accurate and statistically relevant
 - Standardized tests would assist in this effort
 - Collaborative testing (ASTM) is the best
 - Will require significant time and large sample populations for each material property or degradation test
- How much data for each is needed?
 - ASME will need an understanding of the precision and bias for each test protocol
 - How large a sampling size is needed to determine accuracy of data
 - Generally, for room temperature tests in air a minimum of ~30 50 test specimens (per test protocol) are needed for statistical accuracy.

Salt residue

After immersion in FLiNaK

Sub-Sized testing

ASTM International D8091-16 "Standard Guide for Impregnation of Graphite with Molten Salt"

• Recommends a consistent procedure for controlled and reproducible impregnation of graphite with molten salts at constant temperature and pressure

$$D_0 = \frac{w_2 - w_1}{\rho \, V_{open}}$$

$$D_1 = \frac{w_2 - w_1}{\rho \, V_{total}}$$

- $w_1 = initial weight$
- w_2 = weight after impregnation
- V_{open} = open pore volume
- V_{total} = total pore volume
- ρ = salt density at impregnation temperature

https://www.astm.org/

Design impact on code rules

Design functionality is critical for graphite/composite failure

- Depending upon design, component failure definition varies
 - Pore size in graphite/composite
 - Location of MS intrusion in component
 - Where does internal stress or damage occur in component?
 - Component wall thickness:
 - Internal stress development, component operational life-time
 - Lower or higher operating temperature
- Rules need to be applicable for all designs
 - New rules must apply to all potential designs
 - Is it applicable to all graphite-core HTR designs or just one or two designs?
- The way the code rules are organized will need generic understanding how issues will affect current code rules
 - How does it affect POF calculations?
 - Degradation issues
 - Internal stress issues
 - What additional material properties or degradation data are needed
 - Material data sheets, degradation rates, temperature effects, etc.
 - Inspection requirements for degradation (Section XI-2)

Idaho National Laboratory