Graphite Degradation in Molten FLiNaK – *Role of Salt Impurities*

Preet M Singh *Krishna Moorthi Sankar*

School of Material Science and Engineering Georgia Institute of Technology Atlanta, GA

Graphite – Molten Salt Interactions Workshop - ORNL July 20-21, 2022

Background

- *Our research focus - metallic corrosion in halide salts for MSRs and CSP*
	- *Measurement and Control of Salt Redox – effect on alloy corrosion*
	- *Effect of Added Impurities on Corrosion in FLiNaK*

SS316H exposed to FLiNaK SS316H exposed to FLiNaK

+0.5 wt.% Li_2O

SS316H exposed to FLiNaK $+ 0.5$ wt.% NiO

Graphite – Molten Fluoride Interaction

- **Solidified FLiNaK-puck was more difficult to remove from graphite crucibles when certain oxide or fluoride impurities were intentionally added to the salt**
	- **Wetting behavior of FLiNaK changed with impurities**
- **Some oxide impurities lead to "leak" of FLiNak in the graphite crucible**
- *We decided to systematically study the effect of salt impurities on graphite "wetting" or impregnation*

Experimental Methods

- **Graphite "fired" in glovebox by heating the sample at 900 °C in Ar-4%H² gas environment - to remove moisture and other impurities**
- **Tests conducted at 700^oC for 100 hours in Nickel crucibles**
- **IG-110 High Purity Graphite** *(Ash content <5ppm)*

Graphite Testing Conditions

- **Graphite Samples were Exposed to molten FLiNaK salt** *(46.5-11.5-42 mol % LiF-NaF-KF)*
- **At 700^oC for 100 hours in Nickel crucibles**

Organic Impurities and Moisture in Graphite

TOP

BOTTOM

Graphite Samples "Fired" at 900°C in Ar-4% H_2 Environment

Sample *(Fired) No mass gain or loss after test*

Graphite Sample *(Not Fired)*

Salt at the Surface of Graphite *- Wetting*

Untested Graphite IG-110

Graphite (Fired) in Molten FLiNaK - Top **Graphite (Not Fired) in Molten FLiNaK - Top**

XRD of IG-110 Graphite Samples

XRD of "Non-Fired" IG-110 Graphite Samples

EDS *- Fractured "Fired" Graphite Sample After FLiNaK Exposure*

 C K α 1 2

 $50 \mu m$

 $50 \mu m$

- **SEM images of cross-section of tested Graphite specimens**
- **Cross-sectioning performed by breaking the sample without cutting it with a saw to avoid salt contamination**

EDS - *Fractured "Not Fired" Graphite Sample after FLiNaK Exposure*

 $F K \alpha 1_2$

Κ Κα1

 $100 \mu m$

Na $K\alpha1_2$

Graphite (Fired) in Molten FLiNak with Impurities

FLiNaK + 0.5 wt.% CrF3

FLiNaK + 0.5 wt.% NiO

FLiNaK $+$ 0.5 wt.% Cr_2O_3

FLiNaK + 0.5 wt.% Li2O

Georgia lech

Surface of Tested Graphite Samples

Graphite (Fired) in Molten FLiNaK with added Cr2O³ - Top

Graphite (Fired) in Molten FLiNaK with added CrF³ - Top

Graphite (Fired) in Molten FLiNaK with added NiO - Top

Samples Tested with Li2O Impurities

Position [°20] (Copper (Cu))

Georgia

lech

EDS - Fractured Graphite Sample (Fired) - FLiNaK + Li2O

Use of Active Metals *(Be, Li, or others)* **to Control Redox Potential and Corrosion of Structural Alloys in FLiBe or FLiNaK**

Can "*excess" active metal in molten salt affect Graphite?*

Effect of Li addition of Corrosion of 316H SS in Molten FLiNaK

FLiNaK (unpurified) FLiNaK + 0.02 wt.% Li FLiNaK + 0.2 wt.% Li FLiNaK + 2 wt.% Li

Graphite (Fired) in Molten FLiNaK + Li

Tests conducted at 700^oC for 100 hours in Nickel crucibles

FLiNaK + 0.2 wt.% Li FLiNaK + 2 wt.% Li

TOP

Intercalated Li in Graphite *– Formation of Lithium Carbides*

2Li + 2C = Li2C2 *G = -10.7Kcal/mol at 700^oC (HSC data)*

Li₄C₃, Li₂C₂ and LiC₁₂ are Thermodynamically Stable - *ab initio* DFT Calculations

Toshiyuki et. al, Comprehensive elucidation of crystal structures of lithium intercalated graphite; Carbon, Volume 142, February 2019, Pages 513-517

Yangzheng Lin, Timothy A. Strobel, and R. E. Cohen; Structural Diversity in Lithium Carbides *Phys. Rev. B 92, 214106 – Published 11 December 2015*

Planned Work Contact Angle Measurements *– Effect of Impurities*

Setting up contact angle measurements inside glove box – *to study effect of FLiNaK impurities on graphite wetting*

Summary

- **Graphite firing to remove moisture and volatile impurities decreases wetting of IG-110 graphite in molten FLiNaK salt**
- **Presence of impurities in the salt can change the wetting behavior and salt impregnation of IG-110 graphite in molten FLiNaK**
	- **Depends on impurity type and amount**
	- **Type and Surface Conditions of Graphite**
- **Presence of excess lithium metal can cause "lithiation" of graphite and formation of lithium carbides.**
	- **May result in mechanical degradation** *(Cracking)* **of IG-110 graphite**
- *What about excess beryllium? – Beryllium Carbide (Be2C) is also thermodynamically stable under MSR operating conditions*

Acknowledgements

- **DOE NEUP Grant – DE-NE0008749**
- **Sandia National Laboratories (LDRD) Funding**
	- **Toyo Tanso for Graphite Samples**
	- **Prof. Derek Hass (University of Texas)**
		- **Prof. Chaitanya Deo (Georgia Tech)**
	- **Dr. Kevin Chan (now at Kairos Power)**

QUESTIONS?

