Graphite Degradation in Molten FLiNaK – Role of Salt Impurities

Preet M Singh Krishna Moorthi Sankar

School of Material Science and Engineering Georgia Institute of Technology Atlanta, GA

Graphite – Molten Salt Interactions Workshop - ORNL July 20-21, 2022

Background

- Our research focus metallic corrosion in halide salts for MSRs and CSP
 - Measurement and Control of Salt Redox effect on alloy corrosion
 - Effect of Added Impurities on Corrosion in FLiNaK

SS316H exposed to FLiNaK

SS316H exposed to FLiNaK +0.5 wt.% Li₂O

SS316H exposed to FLiNaK + 0.5 wt.% NiO

Graphite – Molten Fluoride Interaction

- Solidified FLiNaK-puck was more difficult to remove from graphite crucibles when certain oxide or fluoride impurities were intentionally added to the salt
 - Wetting behavior of FLiNaK changed with impurities
- Some oxide impurities lead to "leak" of FLiNak in the graphite crucible
- We decided to systematically study the effect of salt impurities on graphite "wetting" or impregnation

Experimental Methods

- Graphite "fired" in glovebox by heating the sample at 900 °C in Ar-4%H₂ gas environment - to remove moisture and other impurities
- Tests conducted at 700°C for 100 hours in Nickel crucibles
- IG-110 High Purity Graphite (Ash content <5ppm)

Graphite Testing Conditions

- Graphite Samples were Exposed to molten FLiNaK salt
 (46.5-11.5-42 mol % LiF-NaF-KF)
- At 700°C for 100 hours in Nickel crucibles

Graphite Fired/Not Fired	Salt Environment
Fired	Purified FLiNaK
Not Fired	Purified FLiNaK
Fired	FLiNaK + 0.5 wt.% Li ₂ O
Fired	FLiNaK + 0.5 wt.% Cr_2O_3
Fired	FLiNaK + 0.5 wt.% NiO
Fired	FLiNaK + 0.5 wt.% CrF ₃
Fired	FLiNaK + 0.2 wt.% Li
Fired	FLiNaK + 2 wt.% Li

Organic Impurities and Moisture in Graphite

TOP

BOTTOM

Graphite Samples "Fired" at 900°C in Ar-4%H₂ Environment

Sample (Fired) No mass gain or loss after test Graphite Sample (Not Fired)

Salt at the Surface of Graphite - Wetting

Untested Graphite IG-110

Graphite (Fired) in Molten FLiNaK - Top Graphite (Not Fired) in Molten FLiNaK - Top

XRD of IG-110 Graphite Samples

XRD of "Non-Fired" IG-110 Graphite Samples

EDS - Fractured "Fired" Graphite Sample After FLiNaK Exposure

50µm

John

- SEM images of cross-section of tested Graphite specimens
- Cross-sectioning performed by breaking the sample without cutting it with a saw to avoid salt contamination

EDS - Fractured "Not Fired" Graphite Sample after FLiNaK Exposure

100µm

F Kα1_2

Κ Κα1

100µm

Na Kα1_2

Graphite (Fired) in Molten FLiNak with Impurities

FLiNaK + 0.5 wt.% CrF₃ FLiNaK + 0.5 wt.% NiO

FLiNaK + 0.5 wt.% Cr₂O₃ FLiNaK + 0.5 wt.% Li₂O

Georgia

lech

Surface of Tested Graphite Samples

Graphite (Fired) in Molten FLiNaK with added Cr₂O₃ - Top Graphite (Fired) in Molten FLiNaK with added CrF₃ - Top

Graphite (Fired) in Molten FLiNaK with added NiO - Top

Samples Tested with Li₂O Impurities

Position [°20] (Copper (Cu))

Georgia

lech

EDS - Fractured Graphite Sample (Fired) - FLiNaK + Li₂O

Use of Active Metals (*Be, Li, or others*) to Control Redox Potential and Corrosion of Structural Alloys in FLiBe or FLiNaK

Can "excess" active metal in molten salt affect Graphite?

Effect of Li addition of Corrosion of 316H SS in Molten FLiNaK

FLiNaK (unpurified)

FLiNaK + 0.02 wt.% Li

FLiNaK + 0.2 wt.% Li

FLiNaK + 2 wt.% Li

Graphite (Fired) in Molten FLiNaK + Li

Tests conducted at 700°C for 100 hours in Nickel crucibles

FLiNaK + 0.2 wt.% Li

FLiNaK + 2 wt.% Li

TOP

BOTTOM

Intercalated Li in Graphite – Formation of Lithium Carbides

2Li + 2C = Li2C2 $\Delta G = -10.7Kcal/mol at 700°C (HSC data)$

 Li_4C_3 , Li_2C_2 and LiC_{12} are Thermodynamically Stable - *ab initio* DFT Calculations

Toshiyuki et. al, Comprehensive elucidation of crystal structures of lithium intercalated graphite; Carbon, Volume 142, February 2019, Pages 513-517

Yangzheng Lin, Timothy A. Strobel, and R. E. Cohen; Structural Diversity in Lithium Carbides Phys. Rev. B 92, 214106 – Published 11 December 2015

Planned Work Contact Angle Measurements – *Effect of Impurities*

Setting up contact angle measurements inside glove box – to study effect of FLiNaK impurities on graphite wetting

Summary

- Graphite firing to remove moisture and volatile impurities decreases wetting of IG-110 graphite in molten FLiNaK salt
- Presence of impurities in the salt can change the wetting behavior and salt impregnation of IG-110 graphite in molten FLiNaK
 - Depends on impurity type and amount
 - Type and Surface Conditions of Graphite
- Presence of excess lithium metal can cause "lithiation" of graphite and formation of lithium carbides.
 - May result in mechanical degradation (Cracking) of IG-110 graphite
- What about excess beryllium? Beryllium Carbide (Be₂C) is also thermodynamically stable under MSR operating conditions

Acknowledgements

- DOE NEUP Grant DE-NE0008749
- Sandia National Laboratories (LDRD) Funding
 - Toyo Tanso for Graphite Samples
 - Prof. Derek Hass (University of Texas)
 - Prof. Chaitanya Deo (Georgia Tech)
 - Dr. Kevin Chan (now at Kairos Power)

QUESTIONS?

