

MIT NUCLEAR REACTOR LABORATORY

an MIT Interdepartmental Center

Irradiation of Graphite in Li₂BeF₄ (FLiBe) in the MIT Research Reactor

Guiqiu (Tony) Zheng and David Carpenter

Graphite-Molten Salt Interactions Workshop, 2022-07-21

MIT Research Reactor (MITR)

- Built in 1958, upgraded in 1976
- > 6 MW_{th} the 2nd largest university reactor in U.S.
- Light water-cooled, heavy water and graphite-reflected
- Operates 24/7, 10-week cycles

ONSE.

Produces radiation for research, medical, and industrial uses

MIT Research Reactor (in-core)

MITR In-core FLiBe Salt Irradiations

MITR Experiment	Primary Objective	Irradiation	Irradiation	Mass of total	Tested materials in
		environment	temperature and	irradiated salt	salt
			duration		
FS-1	In-core corrosion,	In MITR core	700°C, 1000 hr	121.3g of Li-7	316ss, Hastelloy N,
(2013-09)	tritium transport			enriched FLiBe	TRISO particles,
					SiC
FS-2	In-core corrosion,	In MITR core	700°C, 300 hr	326.4g of Li-7	316ss, SiC/SiC,
(2014-07)	tritium transport			enriched FLiBe	C/C, IG-110U, A3-3
FS-3	Carbon materials	In MITR core	700°C, 960 hr	101.5g of Li-7	SINAP provided
(2016-11)	compatibility with FLiBe			enriched FLiBe	graphites* and
					C/C, IG-110U, A3-3

FS-3 Capsule and Crucibles

FS-3 Samples and Salt Loading

FS-S

FS-3 Assembly

Tube bending and wiring

Enhancements in the FS-3 design

- > Optimizing space utilization
- Maximizing salt contact
- Minimizing specimen shift
- Enhancing safety and reliability
 - Extended double-encapsulation
 - Improve ease of disassembly
 - More fluoride capture options
 - Demonstrated good integrity
 - Electrical guard heating
 - Hydrogen injection system

IG-110U Surface and Fractured Cross-section

SEM on the surface of IG-110U graphite irradiated in molten salt (different extraction approach)

SEM and EDS fluorine mapping on the fractured cross-section of IG-110U graphite irradiated in molten salt

Round salt particles with various sizes on surface
 Significant amount of molten salt infiltrated into IG-110U

Flattened Cross-section of IG-110U

salt infiltration direction € 300x 🗩 300x MAR 15 2019 15:08 15kV -Mapping 15kV -Mapping MAR 15 2019 12:5 . ∢1 895 µm **∢**] 895 µm 200 µm BSD Full M-IG110U CX 200 µm BSD Fu

Flattened cross-section (cut with blade)

Salt infiltration depth varies by location

salt infiltration direction

Depth of Salt Infiltration in IG-110U

salt infiltration direction

Cross-sections of A3-3

fractured cross-section

flattened cross-section

✤ No salt infiltration observed in in-core molten salt irradiated A3-3 graphite

EDS of Fractured A3-3 Cross-section

EDS mapping on fractured cross-section of irradiated A3-3 confirms that it is resistant to molten salt infiltration under neutron irradiation.

INL instrument: LFA427 temperature: RT to 900°C

- 1. Neutron irradiation significantly changes the thermal diffusivity of graphite
- Infiltrated salt in graphite affects thermal diffusivity: comparing with cleaned sample, lower thermal diffusivity at <~150°C, higher thermal diffusivity at >~150°C

Quantitative Microstructure Analysis

Literature[1-3]:

High pressure molten salt infiltration decreases $d_{(002)}$ -spacing; low dose neutron irradiation increases $d_{(002)}$ -spacing

This study: In-core molten salt irradiation increases lattice parameters, decreases \overline{g}

Z. He *et al.*, "Improvement of stacking order in graphite by molten fluoride salt infiltration," *Carbon N. Y.*, vol. 72, pp. 304–311, 2014.
T. D. Burchell and T. R. Pavlov, "Graphite: Properties and Characteristics," in *Comprehensive Nuclear Materials*, vol. 7, Elsevier, 2020, pp. 355–381.
H. Tang *et al.*, "Infiltration of graphite by molten 2LiF–BeF2 salt," *J. Mater. Sci.*, vol. 52, no. 19, pp. 11346–11359, Oct. 2017

 $\overline{g}(\%)$

81.5431

80.6665

77.1118

Summary

- Deep FLiBe salt infiltration was observed in IG-110U, but not in A3-3 after in-core irradiation
- Infiltration of molten salt into IG-110U graphite impacts thermal diffusivity at different temperature ranges
- Combined effects of salt exposure and irradiation change graphite lattice parameters and degree of graphitization (\overline{g})
- Understanding of the mechanism of salt infiltration in graphite under neutron irradiation requires further investigation

MIT Nuclear Reactor Laboratory

Research Group

Michael Ames

Gordon Kohse

Yakov Ostrovsky

Lin-Wen Hu

Safety and Operation Groups

Backup slides

fractured cross-section

 Clearly observed significant amount of frozen salt in graphite, salt spread and tightly attached on various locations including fillers and binders

