
Neutron irradiation of graphite in fuel salt

ORNL MSR workshop 22 July 2022

Tjark van Staveren

Nuclear. For life.

The NRG Molten Salt Program

Neutron irradiation of graphite in fuel salt

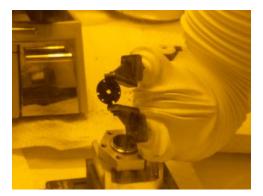
Graphite impregnation set-up

Nuclear. For life.

NRG program overview

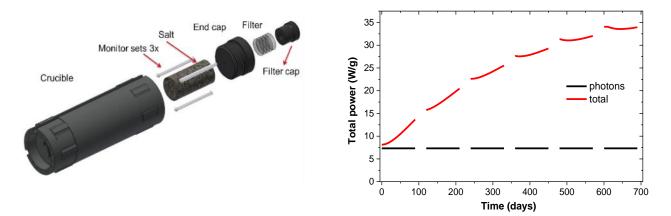
- Sponsored by the Dutch Ministry of Economic Affairs as part of a broader Nuclear Energy R&D program
- In collaborations with JRC, TU Delft and CV Rez
- Program objective: contribute to MSR technology development and realisation
 - Obtain operational experience
 - salt handling, liquid fuel irradiation
 - Qualify materials and fuels
 - Temperature, Radiation, Corrosion
 - Study fission product behavior (normal and accident conditions)
 - Tackle waste issues
 - Work towards Integral Demonstration

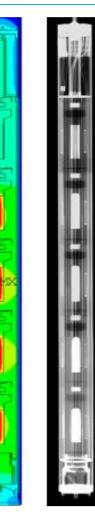
Centrum výzkumu Řež s.r.o. Research Centre Řež

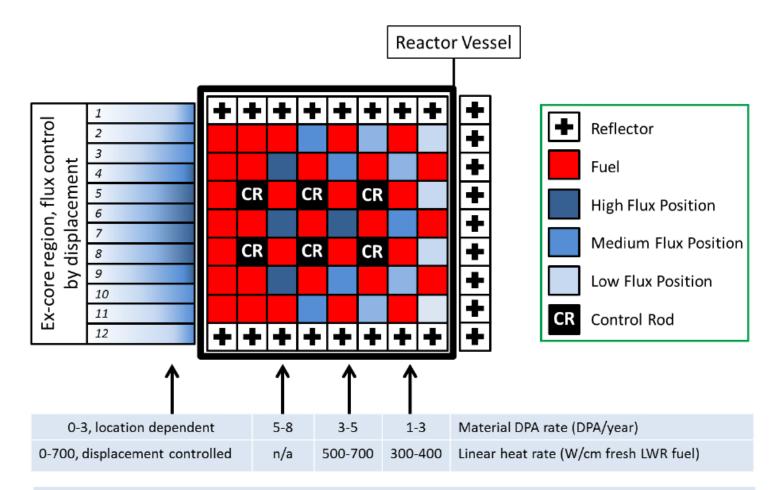


Graphite / fuel salt activities

- Neutron irradiation of fuel salt in graphite crucibles (SALIENT-01)
- Development graphite impregnation set-up
 - Other activities within the MSR program
 - Neutron irradiation of alloys under inert and fuel salt conditions
 - Gamma irradiation of fuel salts
 - Modelling > SPECTRA / CFD

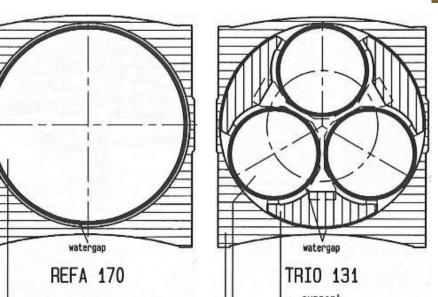

SALIENT-01 objectives


- Confirm claims of good fission product retention in the salt
- Obtain size distributions for noble metal particles
- Assess interactions between fuel salt and fine-grained nuclear graphite, as well as possible uptake of fission products by the graphite
- 'Stepping stone' to more complex irradiations with e.g.: salt buffering, redox control, fission gas removal through helium bubbling, and salt flow


EU DuC = E001

SALIENT-01 Design

- Irradiation of 78LiF-22ThF₄ salt
- 5 open capsules fabricated from nuclear-grade graphite (4 loaded) in containment with He-Ne mixture
- Fuel power rises during irradiation due to production of U-233
- Fixed crucible temperature (~600 °C) actively maintained during irradiation



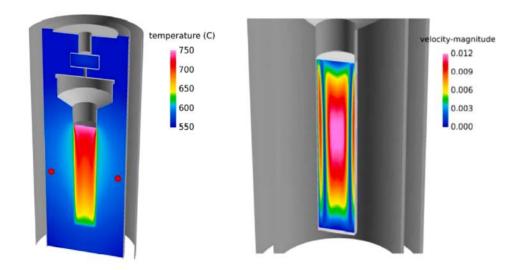
The stable and constant flux profile in each irradiation position is a unique HFR feature

HFR Standard Irradiation Rigs

- Outside is water-cooled, inside gas swept (mixtures of helium, neon, nitrogen)
- Instrumentation throughputs
- Customisation possible
- SALIENT-01 in TRIO facility

Graphite crucibles

- 2 fine graphite types
- Diameter 20 mm / length 80 mm
 3 monitorsets to confirm received
- 3 monitorsets to confirm received dose and burn-up
- Holes in circumference for gas lines and thermocouples
- 1 crucible with Ni inner liner to compare deposition on graphite and metal
- Received dose ~4 DPA, linear shrinkage < 2 vol% expected



Crucible nr. (bottom to top)	Graphite type	Sample weight (g)	Th-232 wt (g)	Column height* (mm)	Salt column diameter (mm)
L1	PCIB	7.1293	4.1331	36.4	7.6
L2	T-950	6.1344	3.5564	36.4	7.0
L3	PCIB	6.2791	3.6403	36.6	7.0
L4	T-950	7.1743	4.1592	37.1	7.8
L5	PCIB	-	-		

Determined at room temperature.

Salt temperature and velocity

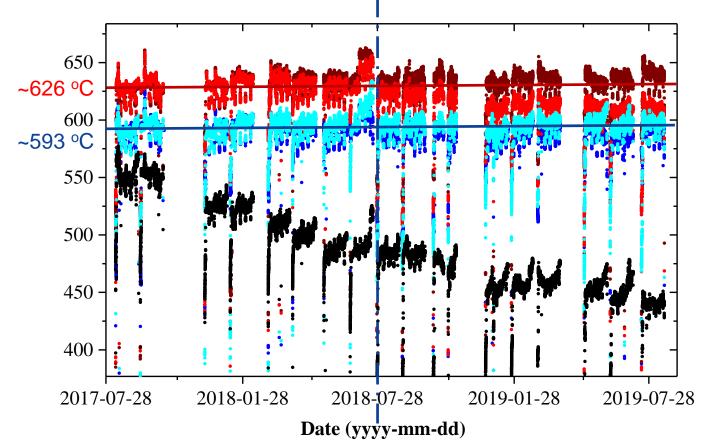
- CFD analysis performed to assess salt temperatures and flow velocities
- Assumed salt power of 23 W/g and thermocouple temperature of 590°C
- Temperature variation on surface of crucible ~40°C, flow velocity 12 ± 1 mm/s (upwards in centre and downwards on crucible wall)

SALIENT-01 vs generic MSR conditions

Representative features

- Fine grained graphite in contact with fuel salt
- Irradiation controlled to typical MSR operating temperature
- Build-up of fission products
- Shrinking of graphite with irradiation

Experimental limitations

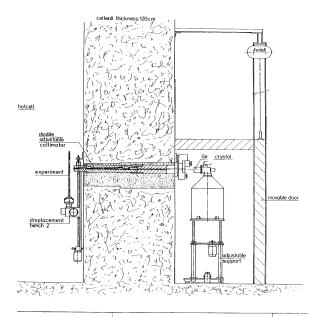

- Limited to ~4 DPA received by the graphite
- Limited to one salt type (78LiF-22ThF₄) with limited flow (up to ~1 cm/s)
- Shutdowns between irradiation cycles with low temperature conditions, potentially allowing fluorine gas production by radiolysis (but no direct effects witnessed with irradiation)
- No redox control

Irradiation (August 2017 – August 2019, 17 cycles)

Measured graphite wall temperatures over 508 full power days Active temperature regulation of the saltbearing capsules.

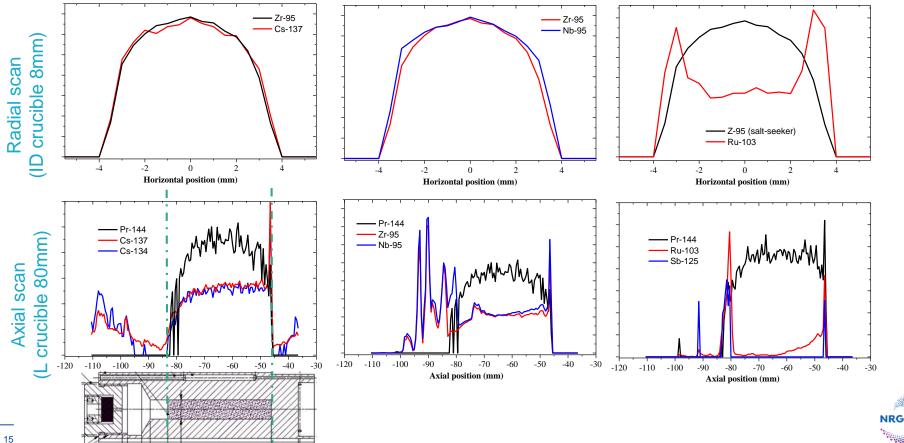
SALIENT-01 was moved to a lower-flux position following cycle 8

Estimated burn-up 1.5-2% FIHMA

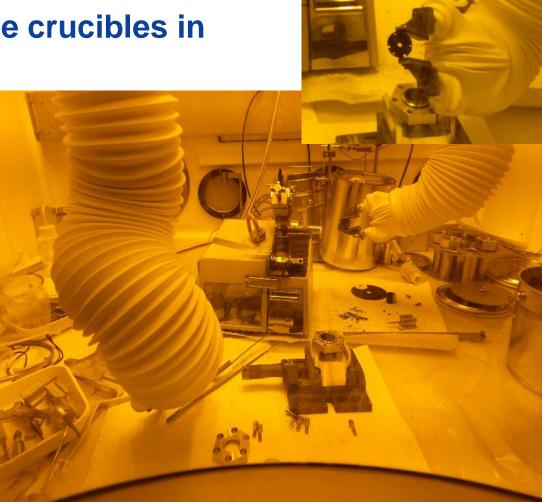



Post-irradiation characterisation activities

- Gamma spectroscopy
- Gas analysis by mass spectrometry
- Scanning Electron Microscopy (EDS / WDS) graphite crucibles
- Transmission Electron Microscopy
- Analysis of dose monitor sets
- CFD analysis to determine salt temperature distribution during irradiation using measured burn-up and temperatures

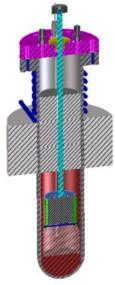

Gamma spectrometry set-up

- In-cell displacement bench to place objects for collimator
- HPGe crystal measures the incident gamma rays



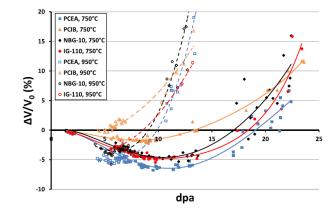
Results gamma spectroscopy

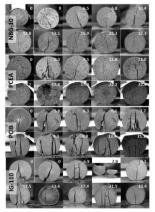
Dismantling of graphite crucibles in glovebox hot cell


- Alpha hot cell, nitrogen-flushed (O $_2$ <0.4%, H $_2$ O <200 ppm) for
 - dismantling
 - aqueous chemistry/sampling
 - ICP-MS / ICP-OES
 - Gamma spectrometric analysis
 - high-temperature oven testing (oven in test phase)
- Alpha hot cell, nitrogen-flushed (O₂ ~1%) for electron microscopy (SEM/EDS/WDS/EBSD)

Development of graphite impregnation set-up

- Set-up placed in glove box for handling of fuel salts and (irradiated) graphite
- Salt bath with Ø50 mm for three cylindrical specimens
- Covers MSR temperature / pressure conditions (max. 800°C / 8 bar)
- Vacuum and Argon shielding gas
- Design of glove-box impregnation system completed, fabrication in progress





Impregnation set-up measurement plan

- Impregnation of LiF-ThF₄ into PCIB graphite to compare / complement with SALIENT-01
 - Virgin graphite
 - Irradiated graphite from SALIENT-01 (and possibly INNOGRAPH) @ 4-5 dpa
 - Determining effect of impregnation time / specimen size
 - Comparison with post-irradiation data from SALIENT-01 (operating at 2.5-3.5 bar, TBD)
- Compare different virgin and irradiated graphites from INNOGRAPH archive

See also: Comparison of irradiation behaviour of HTR graphite grades (Heijna, 2017)

Conclusions and next steps

Conclusions

- Successful irradiation of fuel salts in graphite crucibles
- First PIE results available give information on distribution and retention of fission elements

Next steps

- Continue (technically challenging) dismantling
- Preparation of samples for in-cell microscopy (light microscopy and SEM/EDS/WDS)
- Finalise fabrication of impregnation set-up and initiate testing of graphites

